MAT3104 Mathematical Modelling in Financial Economics
Semester 2, 2013 External Toowoomba  
Units :  1 
Faculty or Section :  Faculty of Sciences 
School or Department :  Maths and Computing 
Version produced :  21 July 2014 
Staffing
Examiner: Ron Addie
Moderator: Dmitry Strunin
Requisites
Prerequisite: (MAT2100 and STA2300) or (MAT2500 and STA2300) or Students must be enrolled in the following Program: MSBN
Rationale
Of fundamental importance to science, finance and engineering, are processes with random fluctuations. The series of prices of a financial instrument such as an equity, bond, or contract is an ideal and extremely important example. Some graduates will work in financial and commercial applications of mathematics where stochastic differential equations (SDEs) are of fundamental importance. SDEs also apply in many other areas in science and engineering and have many features that distinguish them from other mathematical models. Developing technical communication is also essential as preparation for the workplace which is addressed in this course.
Synopsis
This course begins by investigating models of economic activity and the financial and economic strategies which are used to stimulate economic activity. After this models of financial processes, such as equity prices, interest rates, bond yields, and so on are considered. Simulation models of such processes are developed and used in experiments using scripts written in R and scilab which are supplied on the course web page (students may choose whether to use R or scilab  it is not necessary to use both).
The theory of Stochastic differential equations is introduced and studied by simulation and in theory. Techniques for solving such equations by means of Ito's formula are explained and applied. This is applied to financial process problems and the BlackScholes differential equation is formulated and solved. Binomial tree models are introduced and used to solve a variety of option pricing models. In the last part of the course the method for solving option pricing problems based on the equivalent martingale measure. This course is offered only in odd numbered years.
Objectives
On completion of this course students will be able to:
 understand how to analyse and make use of simple mathematical models of an economy;
 understand and apply stochastic processes of various types by means of simulation experiments;
 understand and apply binomial models of options and other financial instruments;
 solve and interpret classes of stochastic differential equations (SDEs);
 apply the equivalent martingale measure to a model of financial or economic activity in order to model risk;
 structure, prepare and deliver documents and presentations of technical material.
Topics
Description  Weighting(%)  

1.  Macroeconomic models  15.00 
2.  Simulation modelling of financial and stochastic processes  15.00 
3.  Binomial models of financial instruments (options and other contracts).  20.00 
4.  An introduction to Ito's stochastic calculus. The BlackScholes model of European options and its solution.  20.00 
5.  Stochastic differential equations and their solution by means of Ito’s formula.  20.00 
6.  Martingale Models of Financial Markets and of Options  10.00 
Text and materials required to be purchased or accessed
ALL textbooks and materials available to be purchased can be sourced from USQ's Online Bookshop (unless otherwise stated). (https://bookshop.usq.edu.au/bookweb/subject.cgi?year=2013&sem=02&subject1=MAT3104)
Please contact us for alternative purchase options from USQ Bookshop. (https://bookshop.usq.edu.au/contact/)

Introductory Book 2013, Course MAT3104 Random Processes to Financial Mathematics, USQ Distance and eLearning Centre, Toowoomba.

Study Book 2013, Course MAT3104 Random Processes to Financial Mathematics, USQ Distance and eLearning Centre, Toowoomba.
Reference materials

Goodman, V & Stamfli, J 2001, The Brooks/Cole series in advanced mathematics, Brooks/Cole, Pacific Grove, CA.
(Chapters 13.) 
Mishkin, F S 2002, The economics of money, banking, and financial markets, 6th ed edn, AddisonWesley, Boston.
(Chapters 22 and 23.) 
Oksendal, B K 1985, Stochastic differential equations, an introduction with applications, 5th ed edn, Springer, Berlin.
(Chapters 13 & 12.) 
Wilmott, P, Howison, S & Dewiynne, J 1995, The mathematics of financial derivatives, a student introduction, Cambridge University Press. Oxford.
(Chapters 14.) 
Winston, W L 2004, Introduction to probability models: operations research volume II, Duxbury.
(Chapters 1314 Operations Research Vol 2, 4th Edn.)
Student workload requirements
Activity  Hours 

Assessments  30.00 
Directed Study  48.00 
Examinations  2.00 
Private Study  87.00 
Assessment details
Description  Marks out of  Wtg (%)  Due Date  Notes 

ASSIGNMENT 1  10  10  09 Aug 2013  
ASSIGNMENT 2  15  15  23 Aug 2013  
ASSIGNMENT 3  15  15  13 Sep 2013  
ASSIGNMENT 4  10  10  11 Oct 2013  
2 HOUR OPEN EXAMINATION  50  50  End S2  (see note 1) 
NOTES
 Examination dates will be available during the semester. Please refer to the examination timetable when published.
Important assessment information

Attendance requirements:
There are no attendance requirements for this course. However, it is the students' responsibility to study all material provided to them or required to be accessed by them to maximise their chance of meeting the objectives of the course and to be informed of courserelated activities and administration. 
Requirements for students to complete each assessment item satisfactorily:
To complete each of the assessment items satisfactorily, students must obtain at least 50% of the total marks available for each assessment item. 
Penalties for late submission of required work:
If students submit assignments after the due date without (prior) approval of the examiner then a penalty of 5% of the total marks gained by the student for the assignment may apply for each working day late up to ten working days at which time a mark of zero may be recorded. No assignments will be accepted after model answers have been posted. 
Requirements for student to be awarded a passing grade in the course:
To be assured of receiving a passing grade a student must achieve at least 50% of the total weighted marks available for the course. 
Method used to combine assessment results to attain final grade:
The final grades for students will be assigned on the basis of the aggregate of the weighted marks obtained for each of the summative assessment items in the course. 
Examination information:
In an Open Examination, candidates may have access to any material during the examination except the following: electronic communication devices, bulky materials, devices requiring mains power and material likely to disturb other students. 
Examination period when Deferred/Supplementary examinations will be held:
Any Deferred or Supplementary examinations for this course will be held during the next examination period. 
University Student Policies:
Students should read the USQ policies: Definitions, Assessment and Student Academic Misconduct to avoid actions which might contravene University policies and practices. These policies can be found at http://policy.usq.edu.au.
Assessment notes

Students must retain a copy of each item submitted for assessment. If requested, students will be required to provide a copy of assignments submitted for assessment purposes. Such copies should be despatched to USQ within 24 hours of receipt of a request being made.

The due date for an assignment is the date by which a student must despatch the assignment to the USQ. The onus is on the student to provide proof of the despatch date, if requested by the Examiner. The examiner may grant an extension of the due date of an assignment in extenuating circumstances.

The Faculty will normally only accept assessments that have been written, typed or printed on paperbased media.

The Faculty will NOT accept submission of assignments by facsimile.

Students who do not have regular access to postal services or who are otherwise disadvantaged by these regulations may be given special consideration. They should contact the examiner of the course to negotiate such special arrangements.

In the event that a due date for an assignment falls on a local public holiday in their area, such as a Show holiday, the due date for the assignment will be the next day. Students are to note on the assignment cover the date of the public holiday for the Examiner's convenience.

Students who, for medical, family/personal, or employmentrelated reasons, are unable to complete an assignment or to sit for an examination at the scheduled time may apply to defer an assessment in a course. Such a request must be accompanied by appropriate supporting documentation. One of the following temporary grades may be awarded IDS (Incomplete  Deferred Examination; IDM (Incomplete Deferred Makeup); IDB (Incomplete  Both Deferred Examination and Deferred Makeup).