USQ LogoCourse specification
The current and official versions of the course specifications are available on the web at http://www.usq.edu.au/course/specification/current.
Please consult the web for updates that may occur during the year.

MEC1201 Engineering Materials

Semester 1, 2013 On-campus Toowoomba
Units : 1
Faculty or Section : Faculty of Engineering & Surveying
School or Department : Mechanical and Mechatronic Engineering
Version produced : 23 April 2014

Contents on this page

Staffing

Examiner: Belal Yousif
Moderator: Harry Ku

Synopsis

Materials science and engineering course has come into its own as a field of endeavour during the past 25 years. The central theme in this development is the concept that the properties and behaviour of a material are closely related to the internal structure of that material. The properties (which may be regarded as the responses of the material to its immediate environment) are functions of: (i) the kinds of atoms present and the type of bonding among them, and (ii) the geometrical arrangement of large numbers of atoms, microstructure and macrostructure. As a result, in order to modify properties, appropriate changes must be made in the internal structure. Also, if processing or service conditions alter the structure, the characteristics of the material are altered. Over the same period, noticeable changes have taken place in the teaching of engineering materials to the engineering students. Previously, elementary courses emphasised on the mechanical properties of materials with long dull lists of chemical specifications and descriptions of processing. More recently, elementary courses seek to provide a thorough grasp of the structures encountered in the principal families of materials - metals, ceramics and polymers - and then to show how the properties of important engineering materials depend on these structures. This course seeks to provide a background knowledge of the more commonly used engineering materials. This will be achieved by promoting an understanding of the interrelation of structure and properties in the principal families of materials and the mechanisms by which the structural changes may be accomplished.

Objectives

The course objectives define the student learning outcomes for a course. On completion of this course, students should be able to:

  1. describe the principal forms of mechanical tests and calculate the mechanical properties of materials;
  2. explain the basic atomic structures of metals, ceramics and polymers;
  3. outline the influence of both atomic structure and microstructure on the deformation mechanism of metal materials;
  4. interpret the principal strengthening mechanisms by which structural change may be accomplished in materials in order to enhance their mechanical properties;
  5. analyse the effects of stress state, temperature and corrosion on the more commonly used materials;
  6. identify and explain the electrical and the magnetic properties of materials;
  7. examine in depth a selected aspect of engineering materials studies.

Topics

Description Weighting(%)
1. Introduction to Engineering Materials 10.00
2. Atomic Structure and Microstructure 10.00
3. Deformation of metals 10.00
4. Binary equilibrium phase diagrams 10.00
5. Effects of non-equilibrium cooling and heat treatments of metals 10.00
6. Structure and mechanical behaviour of polymers 10.00
7. Structure and mechanical behaviour of ceramics 10.00
8. Deterioration in service 10.00
9. Electrical and magnetic properties of materials 10.00
10. Cement and concrete 10.00

Text and materials required to be purchased or accessed

ALL textbooks and materials available to be purchased can be sourced from USQ's Online Bookshop (unless otherwise stated). (https://bookshop.usq.edu.au/bookweb/subject.cgi?year=2013&sem=01&subject1=MEC1201)

Please contact us for alternative purchase options from USQ Bookshop. (https://bookshop.usq.edu.au/contact/)

  • Callister, WD Jnr & Rethwisch, DG 2012, Fundamentals of materials science and engineering: an integrated approach, 4th edn, John Wiley & Sons, New York.
    (Alternative: Callister, WD Jnr 2007, Materials science and engineering: an introduction, 7th edn, John Wiley & Sons, New York.)

Reference materials

Reference materials are materials that, if accessed by students, may improve their knowledge and understanding of the material in the course and enrich their learning experience.
  • Askeland, DR & Phule, PP 2011, The science and engineering of materials, 6th edn, Cengage Learning, Stamford, CT.
  • Budinski, KG & Budinski, MK 2010, Engineering materials properties and selection, 9th edn, Prentice Hall, Upper Saddle River, NJ.
  • John, VB 2003, Introduction to engineering materials, 4th edn, Palgrave MacMillan, Bassingstoke.
  • Schaffer, JP et al 1999, The science and design of engineering materials, 2nd edn, McGraw Hill, Boston.
  • Shackelford, JF 2004, Introduction to materials science for engineers, 6th edn, Pearson, Upper Saddle River, NJ.

Student workload requirements

Activity Hours
Assessments 18.00
Directed Study 29.00
Examinations 2.00
Lectures 39.00
Private Study 55.00
Tutorials 12.00

Assessment details

Description Marks out of Wtg (%) Due Date Notes
ASSIGNMENT 1 100 10 28 Mar 2013
ASSIGNMENT 2 100 10 26 Apr 2013
ASSIGNMENT 3 100 10 20 May 2013
2 HOUR RESTRICTED EXAMINATION 700 70 End S1 (see note 1)

NOTES
  1. Student Administration will advise students of the dates of their examinations during the semester.

Important assessment information

  1. Attendance requirements:
    It is the students' responsibility to attend and participate appropriately in all activities (such as lectures, tutorials, laboratories and practical work) scheduled for them, and to study all material provided to them or required to be accessed by them to maximise their chance of meeting the objectives of the course and to be informed of course-related activities and administration.

  2. Requirements for students to complete each assessment item satisfactorily:
    To satisfactorily complete an individual assessment item a student must achieve at least 50% of the marks or a grade of at least C-. (Depending upon the requirements in Statement 4 below, students may not have to satisfactorily complete each assessment item to receive a passing grade in this course.)

  3. Penalties for late submission of required work:
    If students submit assignments after the due date without (prior) approval of the examiner then a penalty of 5% of the total marks gained by the student for the assignment may apply for each working day late up to ten working days at which time a mark of zero may be recorded.. No assignments will be accepted after model answers have been posted.

  4. Requirements for student to be awarded a passing grade in the course:
    To be assured of receiving a passing grade in a course a student must obtain at least 50% of the total weighted marks for the course.

  5. Method used to combine assessment results to attain final grade:
    The final grades for students will be assigned on the basis of the weighted aggregate of the marks (or grades) obtained for each of the summative assessment items in the course.

  6. Examination information:
    In a Restricted Examination, candidates are allowed access only to specific materials during the examination. The only materials that candidates may use in the restricted examination for this course are: writing materials (non-electronic and free from material which could give the student an unfair advantage in the examination); calculators which cannot hold textual information (students must indicate on their examination paper the make and model of any calculator(s) they use during the examination).

  7. Examination period when Deferred/Supplementary examinations will be held:
    Any Deferred or Supplementary examinations for this course will be held during the examination period at the end of the semester of the next offering of this course.

  8. University Student Policies:
    Students should read the USQ policies: Definitions, Assessment and Student Academic Misconduct to avoid actions which might contravene University policies and practices. These policies can be found at http://policy.usq.edu.au.

Assessment notes

  1. The due date for an assignment is the date by which a student must despatch the assignment to the USQ. The onus is on the student to provide proof of the despatch date, if requested by the Examiner.

  2. Students must retain a copy of each item submitted for assessment. This must be despatched to USQ within 24 hours if required by the Examiner.

  3. In accordance with University Policy, the Examiner may grant an extension of the due date of an assignment in extenuating circumstances.

  4. If electronic submission of assessments is specified for the course, students will be notified of this in the course Introductory Book and on the USQ Study Desk. All required electronic submission must be made through the Assignment Drop Box located on the USQ Study Desk for the course, unless directed otherwise by the examiner of the course. The due date for an electronically submitted assessment is the date by which a student must electronically submit the assignment. The assignment files must be submitted by 11.55pm on the due date using USQ time (as displayed on the clock on the course home page; that is, Australian Eastern Standard Time).

  5. If the method of assessment submission is by written, typed or printed paper-based media students should (i) submit to the Faculty Office for students enrolled in the course in the on-campus mode, or (ii) mail to the USQ for students enrolled in the course in the external mode. The due date for the assessment is the date by which a student must (i) submit the assessment for students enrolled in the on-campus mode, or (ii) mail the assessment for students enrolled in the external mode.

  6. The Faculty will NOT normally accept submission of assessments by facsimile or email.

  7. Students who do not have regular access to postal services for the submission of paper-based assessments, or regular access to Internet services for electronic submission, or are otherwise disadvantaged by these regulations may be given special consideration. They should contact the examiner of the course to negotiate such special arrangements prior to the submission date.

  8. Students who have undertaken all of the required assessments in a course but who have failed to meet some of the specified objectives of a course within the normally prescribed time may be awarded one of the temporary grades: IM (Incomplete - Make up), IS (Incomplete - Supplementary Examination) or ISM (Incomplete -Supplementary Examination and Make up). A temporary grade will only be awarded when, in the opinion of the examiner, a student will be able to achieve the remaining objectives of the course after a period of non directed personal study.

  9. Students who, for medical, family/personal, or employment-related reasons, are unable to complete an assignment or to sit for an examination at the scheduled time may apply to defer an assessment in a course. Such a request must be accompanied by appropriate supporting documentation. One of the following temporary grades may be awarded IDS (Incomplete - Deferred Examination; IDM (Incomplete Deferred Make-up); IDB (Incomplete - Both Deferred Examination and Deferred Make-up).

  10. Harvard (AGPS) is the referencing system required in this course. Students should use Harvard (AGPS) style in their assignments to format details of the information sources they have cited in their work. The Harvard (AGPS) style to be used is defined by the USQ Library's referencing guide. http://www.usq.edu.au/library/referencing