

PBS/PBS PRO and Matlab

Created by HPC Team on the 08/02/17 Page 1 of 5

Submitting a Matlab Job to the Cluster

By default, when running Matlab, the program is running interactively on the Head or Login

node. This should be kept to a minimum when developing programs, as it affects other users

of the node. When you wish to execute jobs, especially jobs that run for a reasonable amount

of time, the job should be submitted to execute on a queue of the "Cluster" in batch mode or

run non-interactively.

If you execute large jobs on the "Head" node, this will slow down usability and will impact

other users performance. The following guide provides details on how to submit a Matlab job

to the HPC cluster. In order to submit a Matlab job to the cluster, you need to write a script

file similar to the ones below. Lines beginning with "##" represents comments. Replace the

username in the directory structure with your username (eg. userr) and the email address to

your email address. Change the Matlab Script File Name to the name of the Matlab file that

you want to be executed on the cluster. Note all "[...]" are required variables or definitions

that require defining.

#!/bin/bash -l

job name

#PBS -N [Name of Job]

select resources

#PBS -l ncpus=[number of cpu's required, most likely 1]

#PBS -l mem=[amount of memory required]

#PBS -l walltime=[how long the job should run for - you may wish to remove

this line to use queue default]

redirect error & output files

#PBS -e /home/[username]/[location]/[input (standard out) file name]

#PBS -o /home/[username]/[location]/[output (standard out) file name]

mail Options

#PBS -m abe

#PBS -M [your email address]

select queue

#PBS -q [default or remove this line to use default]

load matlab module (setup environment)

module load [matlab or matlab/2016b]

change to current working directory

cd /home/[username]/[current working directory]

execute program

matlab -nodisplay -nodesktop -nosplash < [Matlab Script FileName.m]

Real Example

PBS/PBS PRO and Matlab

Created by HPC Team on the 08/02/17 Page 2 of 5

#!/bin/bash -l

job name

#PBS -N Matlab-Job1

select resources

#PBS -l ncpus=1

#PBS -l mem=1g

#PBS -l walltime=100:00:00

redirect error & output files

#PBS -e /home/eng/userr/matlab/matlab-job1.err

#PBS -o /home/eng/userr/matlab/matlab-job1.out

select queue

#PBS -q long

Mail Options

#PBS -m abe

#PBS -M r.user@usq.edu.au

load matlab module (setup environment)

module load matlab

change to current working directory

cd /home/eng/userr/matlab

execute program

matlab -nodisplay -nodesktop -nosplash < matlab-job1.m

Real Example 2

This example is based on the Matlab Parallel Computing Toolbox documentation. With

Parallel Matlab, a single node is used, however with Distributed Matlab multiple nodes are

used in the calculations.

The Matlab file wave.m is used by the PBS script below.

matlabpool open 3

parfor i=1:4096

A(i) = sin(i*2*pi/4096);

end

matlabpool close

plot(A)

print ('-r75','-djpeg','plot.jpg')

quit

The matlabpool command specifiles a pool of three additional processes to work on the

parallel portions of the code. It is not counting the originating process executing wave.m so

there are a total of four processes running in parallel for this job. Therefore, the PBS code

running this example needs to ask for four processors on a single node.

PBS/PBS PRO and Matlab

Created by HPC Team on the 08/02/17 Page 3 of 5

The PBS code used to run wave.m:

#!/bin/csh -l

#PBS -S /bin/csh

#PBS -q standard

#PBS -l nodes=2:ppn=4

#PBS -m be

#PBS -M r.user@usq.edu.au

module load matlab

cd $PBS_O_WORKDIR

unsetenv DISPLAY

setenv MATLAB_PREFDIR /sandisk1/userr/matlabPar

setenv MCR_CACHE_ROOT /sandisk1/userr/my_matlab_mcr_cache

matlab -r wave -logfile matlab.log

Parallel/Dist Computing Toolbox Example

With distributed Matlab, Matlab takes care of PBS job submission without the need for a

separate PBS command file. Though some matlab commands need to be set some variables

so that Matlab runs properly.

The example below shows howto setup a distributed Matlab job. It uses two scripts,

parallel.m used to setup Matlab and PBS environments, and the script colsum.m to do the

Matlab work.

% set default options

% * REPLACE * username with your own loginid

remoteDataLocation = '/sandisk1/username';

clusterHost = 'usqhpc00.usq.edu.au';

% create parallel sched object

sched = findResource('scheduler', 'type', 'torque');

% set sched options

set(sched, 'ClusterMatlabRoot', '/usr/local/matlab');

set(sched, 'HasSharedFilesystem', true);

set(sched, 'RshCommand', 'ssh');

set(sched, 'RcpCommand', 'scp');

% set PBS options

% Ask for a walltime limit of 4 hours

% * REPLACE * 4 with the number of hours you need

set(sched, 'ResourceTemplate', '-S /bin/sh -l walltime=4:00:00 ');

% select the required PBS queue

set(sched, 'SubmitArguments', '-q matlab');

% The following asks for 2 computers (nodes=2)

% and 2 proccessors per node (ppn=2), a total of 4 processors

% * REPLACE * with the number of nodes and processors per node you need

% In addition, require 2GB of memory for each process

% * REPLACE * with the memory you need

PBS/PBS PRO and Matlab

Created by HPC Team on the 08/02/17 Page 4 of 5

set(sched, 'ResourceTemplate', '-l nodes=2:ppn=2,pvmem=2gb');

% create a parallel matlab job

pjob = createParallelJob(sched);

% set the number of CPUs to use

% * REPLACE * with the number of CPU's you need

set(pjob, 'MaximumNumberOfWorkers', 4);

set(pjob, 'MinimumNumberOfWorkers', 4);

% sample matlab job follows.

% * REPLACE * with your own job (once you've tested this one)

% tell parallel job which matlab file to run

set(pjob, 'FileDependencies', {'colsum.m'});

t = createTask(pjob, @colsum, 1, {});

% displays variables for parallel job

get(pjob, 'FileDependencies');

get(pjob, 'JobData');

get(pjob, 'PathDependencies');

get(pjob, 'Tasks');

% submit PBS job

submit(pjob);

% get results from parallel job

waitForState(pjob);

results = getAllOutputArguments(pjob)

Matlab script colsum.m called from the script above.

function total_sum = colsum

if labindex == 1

 % Send magic square to other labs

 A = labBroadcast(1,magic(numlabs))

else

 % Receive broadcast on other labs

A = labBroadcast(1)

end

% Calculate sum of column identified by labindex for this lab

column_sum = sum(A(:,labindex))

% Calculate total sum by combining column sum from all labs

total_sum = gplus(column_sum)

Once parallel.m has been changed, it can be run as follows:
matlab -r parallel

The PBS command qstat will display the PBS jobs that have been submitted by Matlab.

Executing script on the cluster

PBS/PBS PRO and Matlab

Created by HPC Team on the 08/02/17 Page 5 of 5

The USQ HPC Cluster uses a job scheduler that allows you to schedule and run jobs on the

various compute nodes. To submit a job, simply execute the command: qsub

[pbs_script_file]. A handy command, to check if your job is running, queued or completed is

by using the command qstat.

Multithreading

MATLAB support for multithreaded computation is enabled by default in MATLAB versions

available on the HPC. As mentioned in the MATLAB documentation, multithreading speeds

up elementwise computations such as those done by the sin and log functions.

Consequently, using any of the available versions of MATLAB, it is quite likely that your

scripts will be multithreaded. This has very important consequences for MATLAB jobs

submitted to the HPC cluster. It would be very easy to assume your MATLAB scripts are not

multithreaded and request a single cpu for your job, but if that job actually uses multiple

threads then it will adversely affect other jobs on the cluster. Therefore, care must be taken

to ensure that your MATLAB script only uses the amount of resources requested in

your PBS job script.

In earlier versions of MATLAB it was possible to constrain the number of threads used by

MATLAB with the maxNumCompThreads(N) function. However, this is no longer effective

in recent versions of MATLAB. Therefore, the only options are: (a) reserve a whole compute

node (ppn=8) and let MATLAB use all available cores; or (b) restrict MATLAB to one

thread with the command-line flag -singleCompThread and reserve only one core in the job

script (ppn=1).

Use Whole Compute Node Use Single Core

#!/bin/bash -l

#PBS -l nodes=1:ppn=8

#PBS -l mem=8gb

#PBS -l walltime=12:00:00

cd $PBS_O_WORKDIR

matlab -nodisplay -r amatlabscript

#!/bin/bash -l

#PBS -l nodes=1:ppn=1

#PBS -l mem=8gb

#PBS -l walltime=12:00:00

cd $PBS_O_WORKDIR

matlab -singleCompThread -nodisplay -r amatlabscript

References

1. Matlab Parallel Computing Toolbox

2. Getting Started with Parallel Computing Using MATLAB

3. MATLAB Parallel Computing Toolbox Tutorial

http://www.mathworks.com.au/help/techdoc/index.html?/access/helpdesk/help/techdoc/matlab_prog/brdo29n-1.html=
http://www.mathworks.com/help/toolbox/distcomp/index.html
http://www.mathworks.com.au/products/parallel-computing/tutorials.html
http://www.bu.edu/tech/research/training/tutorials/matlab-pct/

