The University of Southern Queensland

Course Specification

Description: Structural Analysis

<table>
<thead>
<tr>
<th>Subject</th>
<th>Cat-Nbr</th>
<th>Class</th>
<th>Term</th>
<th>Mode</th>
<th>Units</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIV</td>
<td>3505</td>
<td>20580</td>
<td>1, 2003</td>
<td>ONC</td>
<td>1.00</td>
<td>TW MBA</td>
</tr>
</tbody>
</table>

Academic Group: FOENS

Academic Org: FOES03

HECS Band: 2

ASCED Code: 030903

STAFFING

Examiner: Amar Khennane
Moderator: Graham Baker

PRE-REQUISITES

Pre-requisite: MEC2402

OTHER-REQUISITES

Prerequisites 70370

SYNOPSIS

These days the analysis of all but the simple structures is carried out with the aid of computer programmes, in particular the finite element method (FE). The user of the FE method has to decide what kind of elements should be used, and how many of them? Where should the mesh be fine and where may it be coarse? Can the model be simplified? How much physical detail must be represented? Is the behaviour static, dynamic, nonlinear, or what? How accurate will the answers be, and how can they be checked? One need not understand all the mathematics of the finite element to answer these questions. However a competent user must have an understanding of the preliminary mathematics of stress strain and material behaviour, and must be able to understand how elements behave in order to choose suitable kinds, sizes and shapes of elements, and to guard against misinterpretations and unrealistically high expectations. A user must also realise that the FE method is a way of implementing a mathematical theory of physical behaviour. Accordingly, assumptions and limitations of the theory must not be violated by what we ask the software to do. This course is a practical introduction to the use of the FE method. The first few chapters will introduce students to new theory essential for competent use of the FE method, for example linear and nonlinear stress and strain definitions, weighted residual methods, bifurcation behaviour, thin plate theory, etc. The second part of the course emphasises the behaviour of finite elements and includes computational work in which problems are solved using commercial
software (MSC Nastran). Student will be provided with a free limited nodes (300) version of this software for the duration of the course.

OBJECTIVES
On completion of this course, students should be able to:

- demonstrate a detailed knowledge of linear and non linear stress and strain formulations;
- describe three dimensional isotropic linear elastic analysis;
- apply the principles of the weighted residual methods, virtual work and energy principles;
- state the principles of the finite element method;
- assess the capabilities and limitations of truss, beam and frame elements;
- assess the capabilities and limitations of plane strain and plane stress elements;
- identify nonlinear structural behaviour;
- solve linear buckling behaviour problems;
- analyse and solve thin plates problems;
- illustrate an incremental finite element analysis.

TOPICS

<table>
<thead>
<tr>
<th>Description</th>
<th>Weighting (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>8.00</td>
</tr>
<tr>
<td>2. Linear and nonlinear stress definitions</td>
<td>8.00</td>
</tr>
<tr>
<td>3. Linear and nonlinear strain definitions</td>
<td>8.00</td>
</tr>
<tr>
<td>4. Three-dimensional isotropic linear elastic stress-strain relations</td>
<td>4.00</td>
</tr>
<tr>
<td>5. The basic principles of linear elastic analysis</td>
<td>3.00</td>
</tr>
<tr>
<td>6. The principles of the Weighted Residual Method</td>
<td>8.00</td>
</tr>
<tr>
<td>7. Virtual Work and Potential Energy</td>
<td>5.00</td>
</tr>
<tr>
<td>8. Linear elastic finite element analysis of trusses, beams and frames</td>
<td>10.00</td>
</tr>
<tr>
<td>9. Finite element analysis of plane stress and plane strain problems</td>
<td>5.00</td>
</tr>
<tr>
<td>10. Thin-walled plate theory and finite element analysis of thin plates</td>
<td>8.00</td>
</tr>
<tr>
<td>11. Introduction to nonlinear problems</td>
<td>25.00</td>
</tr>
<tr>
<td>12. Bifurcation buckling of thin plates</td>
<td>8.00</td>
</tr>
</tbody>
</table>

TEXT and MATERIALS required to be PURCHASED or ACCESSED:
Books can be ordered by fax or telephone. For costs and further details use the 'Book Search' facility at http://bookshop.usq.edu.au by entering the author or title of the text.

CIV3505 Structural Analysis External Study Package, USQ Publication,
A programmable pocket calculator capable of performing advanced matrix calculations.
REFERENCE MATERIALS

Reference materials are materials that, if accessed by students, may improve their knowledge and understanding of the material in the course and enrich their learning experience.

On-Line Reference Material:
http://www.jwave.vt.edu/crcd/batra/lectures/esmmse5984/continuumfinal.html ,
http://www.courses.fas.harvard.edu/~es120/handouts/ ,
http://www.math.unl.edu/~tshores/linalgtext.html ,
http://www.ies.co.jp/math/java/misc/lintra/lintra.html ,

Coates, A. C., Coutie M. G. & Kong, F. K 1988, *Structural Analysis*, 3rd edition, Van Nostrand Reinhold,

(Chapter related to Matrix Stiffness Method)

STUDENT WORKLOAD REQUIREMENTS

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment</td>
<td>30</td>
</tr>
<tr>
<td>Examinations</td>
<td>3</td>
</tr>
<tr>
<td>Lectures</td>
<td>39</td>
</tr>
<tr>
<td>Private Study</td>
<td>70</td>
</tr>
<tr>
<td>Tutorial</td>
<td>13</td>
</tr>
</tbody>
</table>

ASSESSMENT DETAILS

<table>
<thead>
<tr>
<th>Description</th>
<th>Marks Out of</th>
<th>Wtg(%)</th>
<th>Required</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSIGNMENT</td>
<td>250.00</td>
<td>25.00</td>
<td>Y</td>
<td>23 May 2003 (see note)</td>
</tr>
<tr>
<td>3 HOUR RESTRICTED EXAMINATION</td>
<td>750.00</td>
<td>75.00</td>
<td>Y</td>
<td>END S1 (see note)</td>
</tr>
</tbody>
</table>

NOTES:
. Only assignments that are typed or neatly handwritten in ink will be marked.
. Student Administration will advise students of the dates of their examinations during the semester.

IMPORTANT ASSESSMENT INFORMATION

1 Attendance requirements:
It is the students' responsibility to attend and participate appropriately in all activities (such as lectures, tutorials, laboratories and practical work) scheduled for them, and to study all material provided to them or required to be accessed by them to maximise their chance of meeting the objectives of the course and to be informed of course-related activities and administration.

2 Requirements for students to complete each assessment item satisfactorily:
To complete each of the assessment items satisfactorily, students must obtain at least 50% of the marks available (or at least a grade of C-) for each assessment item.

3 Penalties for late submission of required work:
If students submit assignments after the due date without prior approval then a penalty of 20% of the total marks gained by the student for the assignment will apply for each working day late.

4 Requirements for student to be awarded a passing grade in the course:
To be assured of a passing grade, students must demonstrate, via the summative assessment items, that they have achieved the required minimum standards in relation to the objectives of the course by satisfactorily completing all summative assessment items (the examination and assignments), as stated in 2 above.

5 Method used to combine assessment results to attain final grade:
The final grades for students will be assigned on the basis of the weighted aggregate of the marks (or grades) obtained for each of the summative assessment items in the course.

6 Examination information:
In a Restricted Examination, candidates are allowed access to specific materials during the examination. The only materials that candidates may use in the restricted examination for this course are: writing materials (non-electronic and free from material which could give the student an unfair advantage in the examination); programmable calculators (students must indicate on their examination paper the make and model of any calculator(s) they use during the examination). The formulae sheet given in the Introductory Book will be provided with the exam paper. It is up to the student to memorise or derive the rest of the formulae in the course.

7 Examination period when Deferred/Supplementary examinations will be held:
Any Deferred or Supplementary examinations for this course will be held during the examination period at the end of the semester of the next offering of this course.

8 University Regulations:
Students should read USQ Regulations 5.1 Definitions, 5.6. Assessment, and 5.10 Academic Misconduct for further information and to avoid actions which might contravene University Regulations. These regulations can be found at the URL: http://www.usq.edu.au/SECARIAT/calendar/Part5/ or in the printed version of the current USQ Handbook.

ASSESSMENT NOTES

1 The due date for an assignment is the date by which a student must despatch the assignment to the USQ. The onus is on the student to provide proof of the despatch date, if requested by the Examiner.
2 Students must retain a copy of each item submitted for assessment. This must be produced within five days if required by the Examiner.

3 In accordance with University's Assignment Extension Policy (Regulation 5.6.1), the examiner of a course may grant an extension of the due date of an assignment in extenuating circumstances.

4 The Faculty will normally only accept assessments that have been written, typed or printed on paper-based media.

5 The Faculty will NOT accept submission of assignments by facsimile.

6 Students who do not have regular access to postal services or who are otherwise disadvantaged by these regulations may be given special consideration. They should contact the examiner of the course to negotiate such special arrangements.

7 In the event that a due date for an assignment falls on a local public holiday in their area, such as a Show holiday, the due date for the assignment will be the next day. Students are to note on the assignment cover the date of the public holiday for the Examiner's convenience.

8 Students who have undertaken all of the required assessments in a course but who have failed to meet some of the specified objectives of a course within the normally prescribed time may be awarded the temporary grade: IM (Incomplete - Make up). An IM grade will only be awarded when, in the opinion of the examiner, a student will be able to achieve the remaining objectives of the course after a period of non-directed personal study.

9 Students who, for medical, family/personal, or employment-related reasons, are unable to complete an assignment or to sit for an examination at the scheduled time may apply to defer an assessment in a course. Such a request must be accompanied by appropriate supporting documentation. One of the following temporary grades may be awarded IDS (Incomplete - Deferred Examination; IDM (Incomplete Deferred Make-up); IDB (Incomplete - Both Deferred Examination and Deferred Make-up).

10 The Faculty of Engineering and Surveying does not offer supplementary examinations.

OTHER REQUIREMENTS

1 Students will require access to e-mail and internet access to USQConnect for this course.