Description: Engineering Materials

<table>
<thead>
<tr>
<th>Subject</th>
<th>Cat-Nbr</th>
<th>Class</th>
<th>Term</th>
<th>Mode</th>
<th>Units</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC</td>
<td>1201</td>
<td>24575</td>
<td>2, 2003</td>
<td>ONC</td>
<td>1.00</td>
<td>TWMBR</td>
</tr>
</tbody>
</table>

Academic Group: FOENS
Academic Org: FOES02
HECS Band: 2
ASCED Code: 030305

STAFFING
Examiner: Mick Morgan
Moderator: Doug Baddeley

SYNOPSIS
Materials science and engineering has come into its own as a field of endeavour during the past 25 years. The central theme in this development is the concept that the properties and behaviour of a material are closely related to the internal structure of that material. The properties (which may be regarded as the responses of the material to its immediate environment) are functions of: (i) the kinds of atoms present and the type of bonding among them, and (ii) the geometrical arrangement of large numbers of atoms, microstructure and macrostructure. As a result, in order to modify properties, appropriate changes must be made in the internal structure. Also, if processing or service conditions alter the structure, the characteristics of the material are altered. Over the same period noticeable changes have taken place in the teaching of engineering materials to the engineering student. Previously, elementary courses emphasised the mechanical properties of materials with long dull lists of chemical specifications and descriptions of processing. More recently, elementary courses seek to provide a thorough grasp of the structures encountered in the principal families of materials - metals, ceramics and polymers - and then to show how the properties of important engineering materials depend on these structures. This course seeks to provide a background knowledge of the more commonly used engineering materials. This will be achieved by promoting an understanding of the interrelation of structure and properties in the principal families of materials and the mechanisms by which the structural changes may be accomplished.

OBJECTIVES
On completion of this course, students should be able to:

- explain the basic atomic structures of metals, ceramics and polymers;
• outline the influence of both atomic structure and microstructure on the mechanical properties of the materials listed in objective 1;
• describe the principal forms of mechanical tests and calculate the mechanical properties of engineering materials;
• interpret the principal mechanisms by which structural change may be accomplished in engineering materials in order to enhance their mechanical properties;
• analyse the effects of stress state, temperature and corrosion on the more commonly used engineering materials;
• identify the major forms of corrosion commonly found in engineering materials;
• examine in depth a selected aspect of engineering materials studies.

TOPICS

<table>
<thead>
<tr>
<th>Description</th>
<th>Weighting (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction to Materials Science and Engineer</td>
<td>1.00</td>
</tr>
<tr>
<td>2. Atomic Bonding and Structures of Materials</td>
<td>9.00</td>
</tr>
<tr>
<td>3. Properties and Testing of Materials</td>
<td>15.00</td>
</tr>
<tr>
<td>4. Deformation and Annealing of Metals</td>
<td>10.00</td>
</tr>
<tr>
<td>5. Phase Equilibria in Metal Alloy Systems</td>
<td>10.00</td>
</tr>
<tr>
<td>6. Non Equilibrium Effects in Metal Alloy Systems</td>
<td>10.00</td>
</tr>
<tr>
<td>7. Polymeric Materials</td>
<td>10.00</td>
</tr>
<tr>
<td>8. Ceramic Materials</td>
<td>10.00</td>
</tr>
<tr>
<td>9. Corrosion of Materials</td>
<td>10.00</td>
</tr>
<tr>
<td>10. Selected studies:</td>
<td>15.00</td>
</tr>
<tr>
<td>10.1. The Metallurgy of Steels</td>
<td></td>
</tr>
<tr>
<td>10.2. Welding of Metals</td>
<td></td>
</tr>
<tr>
<td>10.3. Electrical and Magnetic Properties of Materials</td>
<td></td>
</tr>
<tr>
<td>10.4. Cement and Concrete</td>
<td></td>
</tr>
<tr>
<td>10.5. Timber</td>
<td></td>
</tr>
</tbody>
</table>

TEXT and MATERIALS required to be PURCHASED or ACCESSED:

Books can be ordered by fax or telephone. For costs and further details use the 'Book Search' facility at http://bookshop.usq.edu.au by entering the author or title of the text.

MEC1201 Engineering Materials CD-ROM or Study Book 1 and 2, USQ Publication,
REFERENCE MATERIALS

Reference materials are materials that, if accessed by students, may improve their knowledge and understanding of the material in the course and enrich their learning experience.

STUDENT WORKLOAD REQUIREMENTS

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment</td>
<td>19</td>
</tr>
<tr>
<td>Directed Study</td>
<td>28</td>
</tr>
<tr>
<td>Examinations</td>
<td>2</td>
</tr>
<tr>
<td>Lectures</td>
<td>39</td>
</tr>
<tr>
<td>Private Study</td>
<td>55</td>
</tr>
<tr>
<td>Tutorial</td>
<td>12</td>
</tr>
</tbody>
</table>
ASSESSMENT DETAILS

<table>
<thead>
<tr>
<th>Description</th>
<th>Marks Out of</th>
<th>Wtg(%)</th>
<th>Required</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMA 1</td>
<td>60.00</td>
<td>6.00</td>
<td>Y</td>
<td>08 Aug 2003</td>
</tr>
<tr>
<td>CMA 2</td>
<td>60.00</td>
<td>6.00</td>
<td>Y</td>
<td>22 Aug 2003</td>
</tr>
<tr>
<td>CMA 3</td>
<td>60.00</td>
<td>6.00</td>
<td>Y</td>
<td>05 Sep 2003</td>
</tr>
<tr>
<td>CMA 4</td>
<td>60.00</td>
<td>6.00</td>
<td>Y</td>
<td>19 Sep 2003</td>
</tr>
<tr>
<td>CMA 5</td>
<td>60.00</td>
<td>6.00</td>
<td>Y</td>
<td>17 Oct 2003</td>
</tr>
<tr>
<td>2 HOUR CLOSED EXAMINATION</td>
<td>700.00</td>
<td>70.00</td>
<td>Y</td>
<td>END S2</td>
</tr>
</tbody>
</table>

NOTES:

- Student Administration will advise students of the dates of their examinations during the semester.

IMPORTANT ASSESSMENT INFORMATION

1 Attendance requirements:
 It is the students' responsibility to attend and participate appropriately in all activities (such as lectures, tutorials, laboratories and practical work) scheduled for them, and to study all material provided to them or required to be accessed by them to maximise their chance of meeting the objectives of the course and to be informed of course-related activities and administration.

2 Requirements for students to complete each assessment item satisfactorily:
 To complete each of the assessment items satisfactorily, students must obtain at least 50% of the marks available (or at least a grade of C-) for each assessment item.

3 Penalties for late submission of required work:
 Because CMA model answers are electronically released promptly after the due date, the penalty for late submission of assignment work will be the loss of all marks awarded for the assignment.

4 Requirements for student to be awarded a passing grade in the course:
 To be assured of receiving a passing grade a student must submit all of the (summative) CMA's by the due date, achieve at least 40% in each of the CMA's and in the examination, and at least 50% of the available weighted marks for the summative assessment items.

5 Method used to combine assessment results to attain final grade:
 The final grades for students will be assigned on the basis of the weighted aggregate of the marks (or grades) obtained for each of the summative assessment items in the course.

6 Examination information:
 In a Closed Examination, candidates are allowed to bring only writing and drawing instruments into the examination.

7 Examination period when Deferred/Supplementary examinations will be held:
Any Deferred or Supplementary examinations for this course will be held during
the examination period at the end of the semester of the next offering of this course.

8 University Regulations:
Students should read USQ Regulations 5.1 Definitions, 5.6. Assessment, and 5.10
Academic Misconduct for further information and to avoid actions which might
contravene University Regulations. These regulations can be found at the URL:
http://www.usq.edu.au/SECARIAT/calendar/Part5/ or in the printed version of the
current USQ Handbook.

ASSESSMENT NOTES

1 The due date for an assignment is the date by which a student must despatch the
assignment to the USQ. The onus is on the student to provide proof of the despatch
date, if requested by the Examiner.

2 Students must retain a copy of each item submitted for assessment. This must be
produced within five days if required by the Examiner.

3 In this course students may submit assignments electronically in the format specified
in the assignment requirements.

4 The Faculty will NOT accept submission of assignments by facsimile.

5 Students who do not have regular access to postal services or who are otherwise
disadvantaged by these regulations may be given special consideration. They should
contact the examiner of the course to negotiate such special arrangements.

6 In the event that a due date for an assignment falls on a local public holiday in their
area, such as a Show holiday, the due date for the assignment will be the next day.
Students are to note on the assignment cover the date of the public holiday for the
Examiner's convenience.

7 Students who have undertaken all of the required assessments in a course but who
have failed to meet some of the specified objectives of a course within the normally
prescribed time may be awarded the temporary grade: IM (Incomplete - Make up).
An IM grade will only be awarded when, in the opinion of the examiner, a student
will be able to achieve the remaining objectives of the course after a period of
non-directed personal study.

8 Students who, for medical, family/personal, or employment-related reasons, are
unable to complete an assignment or to sit for an examination at the scheduled time
may apply to defer an assessment in a course. Such a request must be accompanied
by appropriate supporting documentation. One of the following temporary grades
may be awarded IDS (Incomplete - Deferred Examination; IDM (Incomplete
Deferred Make-up); IDB (Incomplete - Both Deferred Examination and Deferred
Make-up).