Description: Mechatronic Practice

<table>
<thead>
<tr>
<th>Subject</th>
<th>Cat-nbr</th>
<th>Class</th>
<th>Term</th>
<th>Mode</th>
<th>Units</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG</td>
<td>3905</td>
<td>31139</td>
<td>1, 2004</td>
<td>ONC</td>
<td>0.00</td>
<td>TWMBA</td>
</tr>
</tbody>
</table>

Academic group: FOENS
Academic org: FOES02
Student contribution band: 2
ASCED code: 030799

STAFFING
Examiner: John Billingsley
Moderator: Bob Fulcher

SYNOPSIS
In mechatronics, mechanical, electrical and computing elements are combined to form an integrated whole. This course draws together mechanical, electrical, software and interfacing aspects of a mechatronic system through a progressive sequence of experiments. A motor is connected to a computer through a power amplifier, while another motor in tandem is monitored through an analogue interface to determine its speed. A line or two of code makes speed control possible. A belt drives a 'trolley' of which the position is monitored and some more effort including some nonlinear strategies results in a 'crisp' position controller of an industrial standard. An inverted pendulum is added to the trolley and the student devises a control scheme to keep it balanced. Several further, brief experiments give familiarity with pneumatic positioning, simple vision interfacing and a hydraulic robot. This course will round off the formation of a mechatronics engineer.

OBJECTIVES
On completion of this course, students should be able to:

- devise or select sensors for measuring the motion of a dynamic system;
- describe and be familiar with the operation of an analogue interface;
- select sensors for system control and interface them;
- understand and write programs for the application of on-line digital control;
- analyse a dynamic system in terms of discrete time equations;
- devise and apply on-line control algorithms and test them.
TOPICS

<table>
<thead>
<tr>
<th>Description</th>
<th>Weighting (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Analogue to digital interfacing</td>
<td>20.00</td>
</tr>
<tr>
<td>2. Computer controlled velocity</td>
<td>20.00</td>
</tr>
<tr>
<td>3. Nonlinear computer position control</td>
<td>20.00</td>
</tr>
<tr>
<td>4. Computer control of an inverted pendulum</td>
<td>20.00</td>
</tr>
<tr>
<td>5. Familiarisation with pneumatic control, simple vision systems and a multi-axis hydraulic robot. (See Practice Book for further details for all topics listed.)</td>
<td>20.00</td>
</tr>
</tbody>
</table>

TEXT and MATERIALS required to be PURCHASED or ACCESSED:

ALL textbooks and materials are available for purchase from USQ BOOKSHOP (unless otherwise stated). Orders may be placed via secure internet, free fax 1800642453, phone 07 46312742 (within Australia), or mail. Overseas students should fax +61 7 46311743, or phone +61 7 46312742. For costs, further details, and internet ordering, use the 'Textbook Search' facility at http://bookshop.usq.edu.au click 'Semester', then enter your 'Course Code' (no spaces).

REFERENCE MATERIALS:

Reference materials are materials that, if accessed by students, may improve their knowledge and understanding of the material in the course and enrich their learning experience.

STUDENT WORKLOAD REQUIREMENTS:

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directed Study</td>
<td>9.00</td>
</tr>
<tr>
<td>Laboratory or Practical Classes</td>
<td>24.00</td>
</tr>
<tr>
<td>Private Study</td>
<td>17.00</td>
</tr>
</tbody>
</table>

ASSESSMENT DETAILS

<table>
<thead>
<tr>
<th>Description</th>
<th>Marks out of</th>
<th>Wtg(%)</th>
<th>Due date</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPORT</td>
<td>1.00</td>
<td>100.00</td>
<td>11 Jun 2004</td>
</tr>
</tbody>
</table>
IMPORTANT ASSESSMENT INFORMATION

1 Attendance requirements:
 It is the students' responsibility to attend and participate appropriately in all activities (such as lectures, tutorials, laboratories and practical work) scheduled for them, and to study all material provided to them or required to be accessed by them to maximise their chance of meeting the objectives of the course and to be informed of course-related activities and administration.

2 Requirements for students to complete each assessment item satisfactorily:
 To complete the practical component satisfactorily, students must submit, by the due date, a practical report which meets the requirements of the assessment scheme.

3 Penalties for late submission of required work:
 Practical reports submitted after the due date will not be assessed.

4 Requirements for student to be awarded a passing grade in the course:
 To be assured of receiving a passing grade students must complete at least 80% of the practical and other activities at a satisfactory standard, as stated in 2 above.

5 Method used to combine assessment results to attain final grade:
 As P is the only passing grade available for this course, all students who are qualified for a passing grade, under the requirements in 4 above, will be given a grade of P. Other students will be given either a Failing grade or an Incomplete grade.

6 Examination information:
 There is no examination in this course.

7 Examination period when Deferred/Supplementary examinations will be held:
 Not applicable.

8 University Regulations:
 Students should read USQ Regulations 5.1 Definitions, 5.6. Assessment, and 5.10 Academic Misconduct for further information and to avoid actions which might contravene University Regulations. These regulations can be found at the URL http://www.usq.edu.au/corporateservices/calendar/part5.htm or in the current USQ Handbook.

ASSESSMENT NOTES

1 The due date for an assignment is the date by which a student must despatch the assignment to the USQ. The onus is on the student to provide proof of the despatch date, if requested by the Examiner.

2 Students must retain a copy of each item submitted for assessment. This must be despatched to USQ within 24 hours if required by the Examiner.

3 In accordance with University's Assignment Extension Policy (Regulation 5.6.1), the examiner of a course may grant an extension of the due date of an assignment in extenuating circumstances.

4 The Faculty will normally only accept assessments that have been written, typed or printed on paper-based media.

5 The Faculty will NOT accept submission of assignments by facsimile.
6 Students who do not have regular access to postal services or who are otherwise disadvantaged by these regulations may be given special consideration. They should contact the examiner of the course to negotiate such special arrangements.

7 In the event that a due date for an assignment falls on a local public holiday in their area, such as a Show holiday, the due date for the assignment will be the next day. Students are to note on the assignment cover the date of the public holiday for the Examiner's convenience.

8 Students who have undertaken all of the required assessments in a course but who have failed to meet some of the specified objectives of a course within the normally prescribed time may be awarded one of the temporary grades: IM (Incomplete - Make up), IS (Incomplete - Supplementary Examination) or ISM (Incomplete -Supplementary Examination and Make up). A temporary grade will only be awarded when, in the opinion of the examiner, a student will be able to achieve the remaining objectives of the course after a period of non directed personal study.

9 Students who, for medical, family/personal, or employment-related reasons, are unable to complete an assignment or to sit for an examination at the scheduled time may apply to defer an assessment in a course. Such a request must be accompanied by appropriate supporting documentation. One of the following temporary grades may be awarded IDS (Incomplete - Deferred Examination; IDM (Incomplete Deferred Make-up); IDB (Incomplete - Both Deferred Examination and Deferred Make-up).