Description: Electromagnetic Concepts

<table>
<thead>
<tr>
<th>Subject</th>
<th>Cat-nbr</th>
<th>Class</th>
<th>Term</th>
<th>Mode</th>
<th>Units</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY</td>
<td>2205</td>
<td>86708</td>
<td>1, 2009</td>
<td>EXT</td>
<td>1.00</td>
<td>Toowoomba</td>
</tr>
</tbody>
</table>

Academic group: FOSCI
Academic org: FOS002
Student contribution band: 6
ASCED code: 010301

STAFFING
Examiner: Brad Carter
Moderator: Joachim Ribbe

REQUISITES
Co-requisite: PHY1104

OTHER REQUISITES
Recommended co-requisite: MAT1102

RATIONALE
Scientists and Engineers working in many areas depend on electronic equipment and imaging systems for their basic data, and in recent years optical phenomena have formed some of the foundation stones of new industries. This course introduces students to electromagnetic theory, electronic sensors and examines basic optical phenomena as part of the wider discipline of physics. The course is available to climatology (not local to the Toowoomba region), engineering, science education and mathematics students, as well as those undertaking the Graduate Certificate in Physics.

SYNOPSIS
This course builds upon a concurrent knowledge of both physics and mathematics to consolidate an understanding of electromagnetic theory, geometrical and wave optics for Scientists, Engineers and Science Teachers. Attendance at residential school is not required for this course. Some of the topics covered include Maxwell's equations, A.C. circuits, lens design, optical systems, light scattering, polarization, Fourier optics and applications of lasers.

OBJECTIVES
On completion of this course students will be able to:

1. demonstrate an understanding of basic electromagnetic theory (Problems, Exam);
2. analyse A.C. circuits using the laws applicable to such analysis (Problems, Exam);
3. carry out calculations for the design of lens systems (Problems, Exam);
4. explain a range of optical systems and carry out evaluations of them (Problems, Assignment, Exam);
5. explain the phenomena of Fourier optics, polarisation and light scattering (Problems, Assignment, Exam); and
6. described the principles of lasers, holography, time domain reflectometry and synthetic aperture radar (Problems, Assignment, Exam).

TOPICS

<table>
<thead>
<tr>
<th>Description</th>
<th>Weighting (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Electromagnetic Theory - Maxwell's equations</td>
<td>25.00</td>
</tr>
<tr>
<td>2. Electromagnetic Induction & AC Circuits</td>
<td>15.00</td>
</tr>
<tr>
<td>3. Wave Guides; Time domain reflectometry; Synthetic aperture radar</td>
<td>20.00</td>
</tr>
<tr>
<td>4. Interference and Optical Systems - CCD camera; Monochromators</td>
<td>15.00</td>
</tr>
<tr>
<td>5. Polarisation and scattering; Fourier optics, lasers and holography.</td>
<td>25.00</td>
</tr>
</tbody>
</table>

TEXT and MATERIALS required to be PURCHASED or ACCESSED

ALL textbooks and materials are available for purchase from USQ BOOKSHOP (unless otherwise stated). Orders may be placed via secure internet, free fax 1800642453, phone 07 46312742 (within Australia), or mail. Overseas students should fax +61 7 46311743, or phone +61 7 46312742. For costs, further details, and internet ordering, use the 'Textbook Search' facility at http://bookshop.usq.edu.au click 'Semester', then enter your 'Course Code' (no spaces).

REFERENCE MATERIALS

Reference materials are materials that, if accessed by students, may improve their knowledge and understanding of the material in the course and enrich their learning experience.

STUDENT WORKLOAD REQUIREMENTS

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>12.00</td>
</tr>
<tr>
<td>Examinations</td>
<td>2.00</td>
</tr>
<tr>
<td>Private Study</td>
<td>156.00</td>
</tr>
</tbody>
</table>
ASSESSMENT DETAILS

<table>
<thead>
<tr>
<th>Description</th>
<th>Marks out of</th>
<th>Wtg (%)</th>
<th>Due date</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROBLEMS</td>
<td>100.00</td>
<td>20.00</td>
<td>24 Apr 2009</td>
</tr>
<tr>
<td>ASSIGNMENT</td>
<td>100.00</td>
<td>20.00</td>
<td>05 Jun 2009</td>
</tr>
<tr>
<td>2 HR RESTRICTED EXAM</td>
<td>100.00</td>
<td>60.00</td>
<td>END S1 (see note 1)</td>
</tr>
</tbody>
</table>

NOTES
1. Examination dates will be available during the Semester.

IMPORTANT ASSESSMENT INFORMATION

1 Attendance requirements:
 There are no attendance requirements for this course. However, it is the students' responsibility to study all material provided to them or required to be accessed by them to maximise their chance of meeting the objectives of the course and to be informed of course-related activities and administration.

2 Requirements for students to complete each assessment item satisfactorily:
 To satisfactorily complete an assessment item a student must achieve at least 50% of the marks or a grade of at least C-. Students do not have to satisfactorily complete each assessment item to be awarded a passing grade in this course. Refer to Statement 4 below for the requirements to receive a passing grade in this course.

3 Penalties for late submission of required work:
 If students submit assignments after the due date without (prior) approval of the examiner then a penalty of 5% of the total marks gained by the student for the assignment may apply for each working day late up to ten working days at which time a mark of zero may be recorded. No assignments will be accepted after model answers have been posted.

4 Requirements for student to be awarded a passing grade in the course:
 To be assured of receiving a passing grade a student must achieve at least 50% of the total weighted marks available for the course.

5 Method used to combine assessment results to attain final grade:
 The final grades for students will be assigned on the basis of the aggregate of the weighted marks obtained for each of the summative assessment items in the course.

6 Examination information:
 In a Restricted Examination, candidates are allowed access to specific materials during the examination. The only materials that candidates may use in the restricted examination for this course are: writing materials (non-electronic and free from material which could give the student an unfair advantage in the examination); calculators which cannot hold textual information (students must indicate on their examination paper the make and model of any calculator(s) they use during the examination. Students whose first language is not English, may, take an appropriate unmarked non-electronic translation dictionary (but not technical dictionary) into the examination. Dictionaries with any handwritten notes will not be permitted. Translation dictionaries will be subject to perusal and may be removed from the candidate’s possession until appropriate disciplinary action is completed if found to contain material that could give the candidate an unfair advantage.

7 Examination period when Deferred/Supplementary examinations will be held:
Any Deferred or Supplementary examinations for this course will be held during the next examination period.

8 University Regulations:
Students should read USQ Regulations 5.1 Definitions, 5.6. Assessment, and 5.10 Academic Misconduct for further information and to avoid actions which might contravene University Regulations. These regulations can be found at the URL http://www.usq.edu.au/corporateservices/calendar/part5.htm or in the current USQ Handbook.

ASSESSMENT NOTES

9 The due date for assessments is the date by which a student must despatch an assignment to the USQ. The onus is on the student to provide proof of the despatch date, if requested by the Examiner. Students must retain a copy of any assignments submitted. This must be produced within 48 hours if required by the Examiner.