Probability
Example 1: using the probability rules
An experiment consists of rolling a single die. Find the probability that the number appearing uppermost is:
a) a \(5\) or a \(6\)?
b) a number less than \(5\)?
c) an \(8\)?
d) an even number or a number less than \(4\)?
Solution:
An experiment consists of rolling a single die. The probability distribution will be:
\(x\) | \(1\) | \(2\) | \( 3\) | \(4\) | \( 5\) | \(6\) |
\(P(x)\) |
\(\displaystyle \frac{1}{6}\) |
\(\displaystyle \frac{1}{6}\) |
\(\displaystyle \frac{1}{6}\) |
\(\displaystyle \frac{1}{6}\) |
\(\displaystyle \frac{1}{6}\) |
\(\displaystyle \frac{1}{6}\) |
a) \begin{eqnarray*}
&& P(x = 5 \mbox{ or } x = 6) \\
&=& P(x = 5) + P(x = 6) \\
&=& \frac{1}{6} + \frac{1}{6} \\
&=& \frac{1}{3}
\end{eqnarray*}
b) \begin{eqnarray*}
&& P(x < 5) \\
&=& P(x = 1) + P(x = 2) + P(x = 3) + P(x = 4) \\
&=& \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} \\
&=& \frac{2}{3}
\end{eqnarray*}
c) \[ P(x=8)=0\]
d) \begin{eqnarray*}
&&P(x \mbox{ is even, or } x < 4) \\
&=& P(x = 1) + P(x = 2) + P(x = 3) + P(x = 4) \\
&& \quad {}+ P(x=6) \\
&=& \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} \\
&=& \frac{5}{6}
\end{eqnarray*}